Pulse Spectrum Analysis of Hospital Patients with Possible Liver Problems

W.A. Lu1, C.H. Chemg1, Y.Y. Lin Wang2 and W.K. Wang3

1 Department of Traditional Chinese Medicine-Taipei Municipal Ho-Ping Hospital
2 Department of Physics, National Taiwan Normal University & National Research Institute of Chinese Medicine
3 Biophysics Laboratory, Institute of Physics, Academia Sinica Taipei, Taiwan 115

*Corresponding author
(Accepted for publication May 8 1996)

Abstract: Pulse diagnosis were performed on 85 patients who came to the hospital for liver and gall-bladder problems. Correlation between liver tests, which include T-Bil, D-Bil, SGOT, SGPT, ZTT, Alp, Y-GT, Cho, ALb and ultra sound scanning, and pulse diagnosis were analyzed. 77 out of 85 subjects showed abnormal liver tests. We used the following 5 criteria for pulse for diagnosis as liver abnormality to test the correlation: (1) $C_1 \geq 3+$ and $C_1+C_4 \geq 4+$ or $C_1+C_6 \geq 4$ (in intensity); (2) $C_1 \leq 3$ (in intensity); (3) $C_6 \geq 3$ and $C_1+C_6 \geq 4$ (in intensity); (4) $C_6 \leq -2$ (in intensity) and $C_6 \leq -2$ (in the phase) and (5) $C_1 \geq 2C_3 \leq -2$ (in intensity) or $C_3 \leq -2$ (in the phase). For C_1(liver) every 5% above normal was given one "+" every 5% below normal was given one "-" For C_3(spleen), C_4(lung), C_6(gall-bladder), every 10% above normal was one"+" every 10% below normal was given one"-" For the phase , every 10% delay in the traveling speed was given one ".-" When considering only the "+" and "-" states and neglecting the quantity of "+" and "-", there are 211(from intensity) x 211(from phase), which equal 2048x2048 possible states in the pulse analysis. We considered only 5 criteria for liver abnormality, the correlation was still very high. $p<0.0002$. Kappa =0.64. It strongly suggests that meridian theory and pulse diagnosis have physiological and pathological importance.
Blood tests are standard diagnostic procedures for liver problems. Indicators such as SGOT (serum glutamate oxaloacetate transaminase), SGPT (serum glutamate pyruvate transaminase) are related to the damage and leakage of liver cells. It is not easy to assess liver problems if they are not causing leakage. There is also no easy assessment as how liver problems are affecting other parts of the body (Daniel & Kurt, 1991), such as spleen, stomach, lung, and gall-bladder. In this report, we studied patients who visited the hospital for possible liver problems, and evaluated the possibility of using pulse spectrum theory to diagnose liver problem.

In our previous report on pulse analysis of chemical factory workers, we found that lung meridian and liver meridian were closely related to liver problems, which might be induced by chemicals (Wang et al., 1996b). Data on that study was gathered from regular checkups, and most of the subjects were not aware of any physical problem. In this study, the subjects were patients who came to the hospital for uncomfortable feeling or liver problem.

Following our last investigation, we again used the liver meridian and lung meridian as markers in pulse diagnosis. In addition, gall-bladder meridian and spleen meridian were used as additional markers, since they are closely related to the liver in physiology (McCuskey, 1994; Sasaki et al., 1986; Zachary et al., 1986; Miller et al., 1984; Thomas et al., 1982) and Yellow Emperor's Canon of Internal Medicine (Huang Ti Nei Ching).

Material and Methods

Subjects

Eighty-five patients were used in this study. They (56 males and 29 females between 16 to 65 years of age with average 41.5 ± 12.0 years) came to the hospital for treatment of liver problem or some unknown uncomfortable feeling.

Two groups of tests were compared in this study:

1. Blood test and ultra sound scanning

All tests were done in Ho-Ping Municipal Hospital. The blood tests included SGOT (serum glutamic oxaloacetic transaminase), SGPT (serum glutamic pyruvic transaminase), D-Bil (Direct Bilirubin), T-Bil (Total Bilirubin), Alp (alkaline phosphates), Y-GT (Y-glutamyl transpeptidase), ZTT (zinc sulfate turbidity), Cho (Cholesterol) and Alb (albumin).
In this study, abnormalities from either blood test or ultra sound scan were considered abnormal (Daniel and Kurt 1991). The following were considered abnormal (normal range are in parentheses):

- **T-Bil**: > 1.0 mg/dl (0.1-1.0 mg/dl)
- **D-Bil**: > 0.4 mg/dl (0.1-0.4 mg/dl)
- **SGPT**: > 35 IU/l (6-35 IU/l)
- **SGOT**: > 30 IU/l (0-30 IU/l)
- **Alp**: > 220 IU/l (75-220 IU/l)
- **GGT**: > 45 IU/l (5-45 IU/l)
- **ZTT**: > 12 ku-u (3-12 ku-u)
- **Cho**: > 250 mg/dl (120-250 mg/dl)
- **Alb**: > 3.5 gm/dl (3.5-5.0 gm/dl)

2. Pulse test

Pulse were taken and analyzed during the patient's first visit to avoid the hunger effect (it is routine to ask patients to fast before drawing blood for testing) (Wang et al., 1996a). Patients who did not take any medicine within the last 3 days were selected as subjects.

Procedures for pulse analysis were similar to our previous experiments (Wang et al., 1994, 1995, 1996a, 1996b). Briefly, the radial artery pressure pulse of both hand were recorded with a pressure transducer (PSL-2000GL, Kyowa Electronic Instrument Co., Ltd., Japan) fixed on the skin with scotch tape and an adjustable belt with a small button to give suitable pressure on the transducer. Criterion of a good measurement is to seek the largest puls amplitude. Subject was asked to rest for 20 minutes, then 44 consecutive pressure pulse measurements were taken. The output of the pressure transducer was stored in an IBM PC via an A/D converter with sampling rate of 430 data point/sec. Pulse spectrum were analyzed with Foulier transform using periods = 1 pulse as described earlier (Wang et al., 1989). The analysis gave a spectrum reading up to the 10th harmonic. Intensity of harmonics above the 11th became very weak and were not recorded.

Intensity and phase were compared to a male standard (average of 100 male college students, age 18 to 20) and a female standard (average of 100 female college students, 17 to 19). Normal was defined as those who had no known health problems.

In addition to the criteria for abnormality in our last report (Wang et al., 1996b), we added a few more criteria (i) C6 ≥ 3 together with C1+C6 ≥ 4; (ii) C6 ≥ 2 (in intensity) and C6 ≥ 2 (in the phase); (iii) C1 ≥ 2 C3 ≥ 2 (in intensity) or C3 ≥ 2 (in the phase). We had therefore five criteria for abnormal liver function:
1. C1 △ 3 and C1+C4 △ 4 or C1+C6 △ 4 (in intensity)
2. C1 △ 3 (in intensity)
3. C6 △ 3 and C1+C6 △ 4 (in intensity)
4. C6 △ -2 (in intensity) and C6 △ -2(in the phase)
5. C1 △ 2 C3 △ -2 (in intensity) or C3 △ -2(in the phase)

For the phase we introduced a new criterion. If the phase angle delayed every 10%, we give one ‘‘-,’’ which signified the traveling speed of this harmonic was slow by 10%. In general this change was mainly due to the structure change in the meridian or its related organ (Wang et al, 1989, 1995).

For the intensity, the definition was the same as we used before; for C1 (liver) every 5% above normal was given one ‘‘+’’ and every 5% below normal was given one ‘‘-.’’ For C3 (spleen), C4 (lung) and C6 (gall-bladder), every 10% above normal was given one ‘‘+’’ and every 10% below normal was given one ‘‘-.’’

Blood test used as the golden standard. The validity of pulse spectrum analysis was analyzed by Kappa value and X2-test.

\[
\text{Actual Agreement beyond chance} \]
\[
\text{Kappa value (κ)=} \frac{P_{O}-P_{E}}{P_{O}+P_{E}}
\]
\[
\text{Potential Agreement beyond chance}
\]
\[
\text{When κ=0 –0.2 : slight agreement; 0.2 –0.4 : fair; 0.4-0.6: moderate; 0.6-0.8: substantial; 0.8-1.0: almost.}
\]

In the X2-test : \[X^2=\sum \frac{(O-E)^2}{E}\], where O is observed value; E is the expected value. From the X2 value, we could find out the p value, the chance non-correlation (Kleinbaum et al, 1988; Rosner 1990; Landis and Koch, 1977).

Results

Results are presented in the following 4 table. Numbers (without parentheses) in the tables were the observed valued where as numbers in the parentheses () were the expected value. Criteria 1,2,3and 4 were used in Table 1,2 and3 to evaluate the validity of pulse diagnosis while criteria 1,2,3,4and 5were used in Table 4>
Table 1. SGOT and SGPT

<table>
<thead>
<tr>
<th></th>
<th>Abnormal</th>
<th>Normal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal</td>
<td>33 (31)</td>
<td>29 (31)</td>
<td>62</td>
</tr>
<tr>
<td>Normal</td>
<td>10 (12)</td>
<td>13 (1)</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>42</td>
<td>85</td>
</tr>
</tbody>
</table>

\[X^2=0.638, \ p = 0.425, \ \kappa = 0.093\]

Table 2. SGOT and SGPT + Bilirubin (T+D)

<table>
<thead>
<tr>
<th></th>
<th>Abnormal</th>
<th>Normal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal</td>
<td>40(36)</td>
<td>22(26)</td>
<td>62</td>
</tr>
<tr>
<td>Normal</td>
<td>10(4)</td>
<td>13(9)</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>35</td>
<td>85</td>
</tr>
</tbody>
</table>

\[X^2=3.066, \ p =0.08, \ \kappa = 0.026\]

Table 3. All indicators in the tests

<table>
<thead>
<tr>
<th></th>
<th>Abnormal</th>
<th>Normal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal</td>
<td>60(56)</td>
<td>2(6)</td>
<td>62</td>
</tr>
<tr>
<td>Normal</td>
<td>17(21)</td>
<td>6(2)</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>8</td>
<td>85</td>
</tr>
</tbody>
</table>

\[X^2=7.777, \ p = 0.0053, \ \text{Kappa}= 0.30\]
Table 4. All indicators in the tests

<table>
<thead>
<tr>
<th></th>
<th>Abnormal</th>
<th>Normal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal</td>
<td>65(61)</td>
<td>2(6)</td>
<td>67</td>
</tr>
<tr>
<td>Normal</td>
<td>12(16)</td>
<td>6(2)</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>8</td>
<td>85</td>
</tr>
</tbody>
</table>

X²=13.863, p = 0.000196, \(\kappa = 0.40 \)

Discussion
Result of this study clearly indicated that criteria 1 and 2 used in our previous study (Wang et al., 1996a) were not sufficient for pulse diagnosis of liver disease, as SGOP, SGPT and Bilirubin (T+G) are not sufficient for liver disease testing.

In our last study (Wang et al., 1996a), the main cause of liver problem might be induced by chemical poisons, and the main route of chemical poisons to enter the human body might the air. Therefore the lung and lung meridian could be the first target to suffer, and the lung and liver meridian became good indicators at transient stage of abnormality. If the liver problem does not start from the lung or become more sever, the other related meridians such as gall-bladder and spleen may also be effected as well.

From the four tables listed above, the p values corresponded very well the value of Kappa.

There are 11 meridians (from 0 to 10th harmonics) in the spectrum analysis and each of them has intensity and phase indicators, each indicator may go either ”+” or”-” with different quantities. Even if we do not consider the quantitative results and just focus on the “+” or”-” states, there are 2^{11}(from intensity) x 2^{11} 9 (from phase), which equal 20448x2048 possible states. We chose just a few criteria in the millions of possible states, and got a good correlation. This strongly suggests that the meridian theory and pulse diagnosis have physiological and pathological importance.

As stated in the introduction, most of the subjects in this study have liver problems. 77 out of the 85 subjects showed liver problem with at least one of the tests. It was reasonable that the more criteria we chose in the pulse spectrum analysis, the better the correlation would be.

This study should not be considered as merely a correlation study, but rather as a classification of pulse spectrum in patients with liver problems. The blood
test or the ultrasound test each indicates a specific problem. In the pulse spectrum analysis, each criterion has its own pathological meaning since these spectrum are related to different meridians, and each meridian has its own physiological functions and pathological roles (*Huang Ti Nei Ching*).

References

N. Hirawa, Y. Uehara, Y. Kawabata, A. Numabe, S. Takada, H. Nagoshi
T. Gomi, T. Ikeda, and M. Omata
Hachimi-jio-gan Extract Protects the Kidney from Hypertensive Injury in Dahl Salt-sensitive Rat ... 241

P. C. Li, M. K. T. Poon and K. M. Ko
Schisandra chinensis-dependent Myocardial Protective Action of Sheng-Mai-San in Rats ... 225

Abdullah A. Dafallah and Zaki Al-Mustafa
Investigation of the Anti-inflammatory Activity of Acaia nilotica And Hibiscus sabdariffa ... 263

Hong Yi, Izumi Nakashima and Ken-ichi Isobe
Enhancement of Nitric Oxide Production from Activated Macrophages By Glycyrrhizin .. 271

I-Hsin Lin, Dou-Mong Hau, Mei-Jane Su and Wang-Chi Chen
Effects of Glycyrrhizae and Glycyrrhizic Acid on Radiation Injury in Mice .. 279

Yasuhiro Shimizu and Shin-ichi Morishita
Metabolism and Disposition of Kyushin, a Drug Containing Senso (Ch’an Su) .. 289

Pulse Spectrum Study

Wei Kung Wang, Tse Lin Hse, His Chan Chang and Yuh-Ying Lin Wang
Effect of Acurpuncture at Tai-Tsih (K-3) on the Pulse Spectrum 305

Pulse Spectrum Analysis of Hospital Patients with Possible Liver Problems ... 315

Clinical Reports

Yutakan Mizushima, Atsushi Hirata, Yooru Hori, Shigeki Sawazaki, Eiji Sugiyama and Massashi Kobayashi
Antitussive Effect of Herbal Medicine Bakumondo-to: A Case Report 321

Hiromichi Ishikawa, MasaKazu Ohashi, Kunihiro Hayakawa, Satoru Kaneko And Makoto Hata
Effects of Guizhi-Fuling-Wan on Male Infertility with Varicocele 327
A publication of
The Institute for Advanced Research in Asian Science and Medicine
A WHO Collaborating Center